RAPH COLORING ON THE GPU AND
SOME TECHNIQUES TO IMPROVE
LOAD IMBALANCE

SHUAI CHE, GREGORY RODGERS, BRAD
BECKMANN, STEVE REINHARDT
AMD

SPEAKER: DIBYENDU DAS

GRAPH COLORING AMD ¢\

A

Graph coloring is a key building block for many graph applications

A

Graph coloring presents load imbalance across GPU threads

A

Its program behavior changes over time in different iterations
— Load distribution across threads

— Static approach usually is not effective

2 ASHES| MAY, 2015

GRAPH COLORING AMDA

4 Label a graph so that no adjacent vertices have the same color
— We do not study optimal coloring in this work

3

3 ASHES| MAY, 2015

BASELINE COLORING ALGORITHM AMD ¢\

4 Randomization-based approach (baseline)
Assign vertices with random values
Repeat the following steps until all the vertices are colored
Each thread checks if a vertex is a local maximum using random numbers
If the vertex is a local maximum, assign the vertex a new color

else ignore the vertex and evaluate it in the following iteration

4 ASHES| MAY, 2015

BASELINE COLORING ALGORITHM AMD ¢\

A Issues of the baseline algorithm
— Different vertices have different degrees

— Load Imbalance across GPU threads. Short running threads have to wait for long
running threads, wasting compute resources and power

A We first apply workstealing to balance workloads across workgroups
— Each workgroup is associated with a work queue

— Each workgroup consists of multiple threads, each of which processes a vertex and its
neighborlist

— The workstealing algorithm uses a similar approach used by Tsigas and Cedermann
(GPU Computing Gems)

5 ASHES| MAY, 2015

WORKSTEALING AMD ¢\

A Two basic operations in workstealing

Pop dequeues an element from the tail of the local queue
Steal dequeues an element from the head of a remote queue, when the local queue is
empty

Workgroup

threads

Work Queues

pop() tail =

head > steal()

6 ASHES| MAY, 2015

PERFORMANCE OF WORKSTEALING AMDA

A Less than 10% performance improvement

250
m'Work Stealing wNo Work Stealing
200

150

100

Execution Time (ms)

50

4 CUs g Cls 16 CUs

7 ASHES| MAY, 2015

WORKSTEALING AMD ¢\

4 Work stealing in the workgroup granularity only partially resolves
the overall load imbalance problem

4 Significant imbalance exists within a workgroup, especially for unstructured
graphs (e.g., power-law graphs)

Workgroup
Compute Unit 1

=

————
Compute Unit 2 EE——

—

=

|

8 ASHES| MAY, 2015

A HYBRID APPROACH AMD ¢\

4 Vertex degree can be a heuristic to estimate the running time of a thread to
process a vertex and its neighborlist

4 We color large-degree vertices first, so that they will not be evaluated in the
following iterations. Load imbalance across threads will be improved.

9 ASHES| MAY, 2015

HYBRID ALGORITHM AMD ¢\

Phase 1 (degree-based coloring)
Precalculate degrees of all the vertices
Repeat the following steps until a switching condition is met
Each thread checks if a vertex is a local maximum using vertex-degree values
If the vertex is a local maximum, assign the vertex a new color
else ignore the vertex and evaluate it in the following iteration
Phase 2 (randomization-based coloring)
Repeat the following steps until all the vertices are colored
Each thread checks if a vertex is a local maximum using random numbers
If the vertex is a local maximum, assign the vertex a new color
else ignore the vertex and evaluate it in the following iteration

Note: for Phase 1, we only color a vertex if and only if it is a local maximum and it is
the only local maximum in the neighborhood

10 ASHES| MAY, 2015

HYBRID ALGORITHM AMD ¢\

4 Degree-based coloring will get diminishing benefits because more and more
vertices will have smaller, same degrees (e.g. dip and coauthor). Thus, we
switch to randomization-based coloring

4 Switch condition:
— No. of colorable of vertices using the degree-based approach is less than a threshold
For example, no. of colorable vertices is not big enough to fit all the GPU cores

— For many unstructured graphs, most of the large-degree vertices can be colored in
only a few iterations.

8000 1.20E+06
dip G.00E04 coAuthor G3 circuit

T000

5.00E +04 1.00E +06

6000

COUE +04 8.00E +05

c000
4000 3.00E +04 6.00E+05

3000

2.00E D4 4.00E+05

2000
1.00E +04

2.00E+05
1000 | || I
|‘|I|l||l|..|. DUUE“'DU ||||I““llll..........---... ssmssimmnnn UUI]E+I]U F T . T T T

0

11 ASHES| MAY, 2015

PERFORMANCE BENEFITS AMDA

A The hybrid algorithm is 23% faster than the baseline, randomization-based
approach for dip20090126, and 27% faster for coAuthorDBLP

4 The hybrid algorithm is especially effective to color unstructured graphs

mmm Hybrid Algonthm ~ === Baseline Algonthm —@—Perf. Speedup

500 30%
450 -
= 400 T
E
@ 350 0% &
E e
= 300 5% 2
= o=
S 250 0% o
X 200 5% £

150 0% E

100

" 5%

0 10%

dip20090126 coAuthorsDBLP G3-circuit

12 ASHES| MAY, 2015

ACTIVE VERTICES ACROSS ITERATIONS AMD ¢\

A High-degree vertices are colored in the first few iterations. Load imbalance is
improved for the following iterations.

200 200 300
Iteration 0 Iteration 1 lteration 7
200 200 200
a
=
E=]
&
]
100 100
b,
0 0
Wertex ID Vertex 1D Vertex ID
300 300 00
Iteration 13 lteration 13 Ireration 25
200 200 200
an
&
=
[k
o
100 100 100
0 % 0 “W\mthIIIHNMMWMI.M.UIM.|.. ||L 0 | | .I
Vertex ID Vertex ID Vertex D

13 ASHES| MAY, 2015

IMPACT OF PHASE CHANGE

4 The best case: switching at the 4t iteration for dip

A 15% performance difference between the best and worst cases

A It is an open research question to determine the optimal switch point.

— Currently, some threshold value is used

14 ASHES| MAY, 2u1>

time

95
90
85
60
75
70
65
60

mmm Number of colors —#=— Execution time (ms)

1 2 3 4 o & 7 g 9 10

Number of iterations (1st phase)

#
32

30

28

26

24

22

20

AMDZ1

CONCLUSION AND FUTURE WORK AMD ¢\

A

This paper shows the cause of SIMD load imbalance when performing coloring

A

We show workstealing offer only limited performance improvement, due to
significant imbalance within a workgroup

4 We propose a hybrid 2-phase graph coloring algorithm with the combination of
degree and randomization-based strategies
4 Future work includes:
— Extension to multiple machine nodes
— Evaluation with different data layouts and inputs
— Integration of this algorithm into other graph applications (e.g., independent set)

15 ASHES| MAY, 2015

